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Receive a data stream comprising one or more data |~ 802
sets

!

Separate each data set into a plurality of sub data | ~ 804
sets

!

Encode each sub data set with a C2 encoding

!

Headerize each sub data set ~ 808
(OPTIONAL)

!

Randomize the sub data sets |~ 810
(OPTIONAL)

!

Encode each C2-encoded sub data set with a |~ 812
modulation code

!

Encode each modulated sub data set witha C1 |~ 814
encoding

!

Simultaneously write the encoded modulated sub | .~ 816
data sets to data tracks of the magnetic tape

|~ 806

FIG. 8
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MAGNETIC TAPE RECORDING IN DATA
FORMAT USING AN EFFICIENT REVERSE
CONCATENATED MODULATION CODE

RELATED APPLICATIONS

The present applicationis a continuation of copending U.S.
patent application Ser. No. 13/483,004, filed May 29, 2012;
which is herein incorporated by reference.

Furthermore, the present application is related to U.S.
patent application Ser. No. 13/483,015, entitled ‘“Partial
Reverse Concatenation for Data Storage Devices Using Com-
posite Codes” to Roy Cideciyan et al. filed May 29, 2012; and
to U.S. patent application Ser. No. 13/483,026 entitled
“Methods for Partial Reverse Concatenation for Data Storage
Devices Using Composite Codes” to Roy Cideciyan et al.,
filed May 29, 2012, which are herein incorporated by refer-
ence.

BACKGROUND

The present invention relates to a magnetic tape data stor-
age format, and more particularly, to storing data on a mag-
netic tape using a reverse concatenated modulation code with
a low-density parity check (LDPC) code.

It has been projected that the capacity of magnetic tape
cartridges will double every two years with an annual com-
pounded growth rate of 41.42%, according to “International
Magnetic Tape Storage Roadmap,” Information Storage
Industry Consortium, September 2008. As the capacities
increase, virtually all areas of tape recording systems will be
improved in order to accommodate the additional storage. For
example, improvements probably will be made to the record-
ing media, the read/write heads, the recording channel, and
servo technologies, and the overall data format.

For example, in the current generation of IBM 3592 and
linear tape-open (LTO) tape drives, data is protected by two
orthogonal Reed-Solomon error correction codes referred to
as Cl and C2. Unencoded data is received by a write formatter
and additional parity bytes are added according to the C1 and
C2 encoding algorithm. Once the C1 and C2 parity bytes are
added, the data is processed by a rate 32/33 run length limited
modulation code.

After modulation encoding, the data is ready to be written
to a magnetic tape. The problem with this architecture is that
the modulation code is inserted between the error correction
codes (ECCs) and the data as it is written on the magnetic
tape. On the read side, modern error correction methodolo-
gies, such as LDPC codes or soft Reed-Solomon detectors,
require that the information received from the data detector
include the associated synchronous data samples. These data
detectors are referred to as ‘soft detectors.” It is not possible to
perform soft detection using current data structures. This is
because the data from the data detector is first processed by
the modulation decoder and then processed by the C1 code.
Any channel information relative to the detected bits is
removed by the modulation decoder which simply outputs
bits. Thus, soft detectors cannot be used with the current data
format architecture. Accordingly, it would be beneficial to
have a data format architecture which alleviates this problem.

BRIEF SUMMARY

In one embodiment, a method for writing data to a mag-
netic tape utilizing a rate-(232/234) reverse concatenated
modulation code includes receiving a data stream including
one or more data sets, separating each data set into a plurality
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2

of'sub data sets, encoding each sub data set with a C2 encod-
ing, encoding each C2-encoded sub data set with a modula-
tion code, encoding each modulated sub data set with a C1
encoding, and simultaneously writing the encoded modulated
sub data sets to data tracks of the magnetic tape.

Other aspects and embodiments of the present invention
will become apparent from the following detailed descrip-
tion, which, when taken in conjunction with the drawings,
illustrates by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a simplified tape drive of a tape-based
data storage system, according to one embodiment.

FIG. 2 shows a block diagram of a low-density parity check
(LDPC) write format architecture, according to one embodi-
ment.

FIG. 3 shows a generator circuit for producing error cor-
rection code (ECC) bytes, according to one embodiment.

FIG. 4 shows a generator circuit for producing cyclic
redundancy check (CRC) bytes, according to one embodi-
ment.

FIG. 5 shows a randomizer circuit, according to one
embodiment.

FIGS. 6 A-6F show an example of creating parity check bits
using an H-matrix, according to one embodiment.

FIG. 7A shows an input interface and state counter in
accordance with one embodiment.

FIG. 7B shows a modulation encoder, according to one
embodiment.

FIG. 8 shows a flowchart of a method, according to one
embodiment.

DETAILED DESCRIPTION

The following description is made for the purpose of illus-
trating the general principles of the present invention and is
not meant to limit the inventive concepts claimed herein.
Further, particular features described herein can be used in
combination with other described features in each of the
various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an,” and “the”
include plural referents unless otherwise specified.

According to one embodiment, a magnetic tape may
employ a data format where an efficient reverse concatenated
modulation code is inserted between a Reed-Soloman C2
error correcting code (ECC) and a low density parity check
(LDPC) code C1.

In one general embodiment, a tape drive system includes a
write channel for writing data to a magnetic tape, the write
channel utilizing a rate-(232/234) reverse concatenated
modulation code. The write channel includes logic adapted
for receiving a data stream comprising one or more data sets,
logic adapted for separating each data set into a plurality of
sub data sets, logic adapted for encoding each sub data set
with a C2 encoding, logic adapted for encoding each C2-en-
coded sub data set with a modulation code, logic adapted for
encoding each modulated sub data set with a C1 encoding,
and logic adapted for simultaneously writing the encoded
modulated sub data sets to data tracks of the magnetic tape.
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In another general embodiment, a method for writing data
to a magnetic tape utilizing a rate-(232/234) reverse concat-
enated modulation code includes receiving a data stream
including one or more data sets, separating each data set into
a plurality of sub data sets, encoding each sub data set with a
C2 encoding, encoding each C2-encoded sub data set with a
modulation code, encoding each modulated sub data set with
a Cl encoding, and simultaneously writing the encoded
modulated sub data sets to data tracks of the magnetic tape.

In yet another general embodiment, a tape drive system
adapted for writing data to a magnetic tape utilizing a rate-
(232/234) reverse concatenated modulation code includes
logic adapted for receiving a data stream including one or
more data sets, logic adapted for separating each data set into
sixty-four sub data sets, each sub data set organized as an
84x918-byte matrix being 77,112 bytes in size, logic adapted
for encoding each sub data set with a C2 encoding by adding
twelve bytes of a (96,84,13) Reed-Solomon C2 ECC to each
84-byte column of each sub data set’s matrix, creating a
96x918-byte matrix being 88,128 bytes in size, logic adapted
for headerizing each C2-encoded sub data set by adding a
10-byte header to each row of each C2-encoded sub data set’s
96x918-byte matrix to create a 96x928-byte matrix being
89,088 bytes in size, logic adapted for randomizing each row
(CW-4) of each headerized sub data set’s 96x928-byte matrix
to create a randomized 96x928-byte matrix, logic adapted for
encoding each C2-encoded sub data set with a modulation
code by applying a (234,232) modulation code to each ran-
domized 96x928-byte matrix by extending a length of each
CW-4 by eight bytes to create a 96x936-byte matrix being
89,856 bytes in size, logic adapted for encoding each modu-
lated sub data set with a C1 encoding by applying a (1992,
1872) LDPC code to each modulation-encoded sub data set
by concatenating four LDPC codewords to each CW-4 to
create a 96x996-byte matrix being 95,616 bytes in size, and
logic adapted for simultaneously writing the modulation-
encoded sub data sets to data tracks of the magnetic tape by
writing designated CW-4’s in sets of 32.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as “logic,” a “circuit,” a “mod-
ule,” ora “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a non-transitory
computer readable storage medium. A non-transitory com-
puter readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable
storage medium would include the following: a portable com-
puter diskette, a hard disk, a random access memory (RAM),
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aread-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any non-transi-
tory, tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device, such as an electrical connection having
one or more wires, an optical fiber, etc.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
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stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 1 illustrates a simplified tape drive 100 of a tape-based
data storage system, which may be employed according to
various embodiments. While one specific implementation of
a tape drive is shown in FIG. 1, it should be noted that the
embodiments described herein may be implemented in the
context of any type of tape drive system.

As shown, a tape supply cartridge 120 and a take-up reel
121 are provided to support a tape 122. One or more of the
reels may form part of a removable cassette and are not
necessarily part of the system 100. The tape drive, such as that
illustrated in FIG. 1, may further include drive motor(s) to
drive the tape supply cartridge 120 and the take-up reel 121 to
move the tape 122 over a tape head 126 of any type. The drive
motor(s) may be considered a drive mechanism for passing
the magnetic tape 122 over the magnetic head 126.

Guides 125 guide the tape 122 across the tape head 126.
Such tape head 126 is in turn coupled to a controller assembly
128 via a cable 130. The controller 128 typically comprises a
servo channel and controls head functions, such as track
following, writing, reading, etc. The cable 130 may include
read/write circuits to transmit data to the head 126 to be
recorded on the tape 122 and to receive data read by the head
126 from the tape 122. An actuator 132 determines position of
the head 126 relative to the tape 122.

An interface may also be provided for communication
between the tape drive 100 and a host (integral or external) to
send and receive the data and for controlling the operation of
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efficient modulation code, e.g., a rate-232/234 (99% efficient)
modulation code versus a rate-32/33 (97% efficient) modu-
lation code; the C1 encoding/decoding may utilize an LDPC
code which is more powerful that the currently used Reed-
Solomon code; data detection/decoding may be performed
using iteration in the detector and iteration in the decoder,
such that soft detection is enabled; and the data structure and
data flow for the encoding/decoding of data may be similar to
the existing data structure and data flow for 3592 data archi-
tecture.

The following descriptions are for an LDPC based error
correction system for a 32-track magnetic tape drive. Of
course, the systems and associated methodology described
herein may be implemented in a tape drive using more or less
than 32 tracks, such as 16 tracks, 8 tracks, 64 tracks, etc. An
alternative LDPC-based error correction system is described
and contrasted with conventionally used systems, according
to various examples. Some assumptions are made in the
examples, specifically that (234,232) reverse concatenated
modulation code is used and that (1992,1872) LDPC code is
used. Note that this is done solely to place the examples in a
context and to assist the reader. Furthermore, reverse concat-
enated modulation codes may be used as full reverse codes or
partial reverse codes, according to various embodiments. It
should be understood that other types of error correction code
may be used in the various permutations and combinations of
the plethora of possible embodiments of the present inven-
tion.

Now referring to FIG. 2, a block diagram of a write format
architecture 200 is shown according to one embodiment. The
process flow through this block diagram is from left to right.

A Sub Data Set, as used herein, is a basic data unit pro-
cessed by the ECC algorithm. The Sub Data Set includes
77,112 bytes organized as an 84x918-byte matrix, according
to one embodiment, specific to a 32-track magnetic tape
format. 64 Sub Data Sets may be constructed from each Data
Set or file.

The first Sub Data Set may be filled by placing the first Data
Set byte into row 0, column 0 of the Sub Data Set and con-
tinuing as shown in Table 1, according to one embodiment,
where the numbers in the table represent the bytes of the Data
Set. Subsequent Sub Data Sets may be filled in a similar
manner, in order, until all Data Sets have been processed.

TABLE 1

Sub Data Set

0 1 2 3 4 913 914 915 916 o17
0 0 1 2 3 4 913 914 915 916 917
1 918 919 920 921 922 1831 1832 1833 1834 1835
82 75276 75277 75278 75279 775280 76189 76190 76191 76192 76193
83 76194 76195 76196 76197 76198 77107 77108 77109 77110 77111
60

the tape drive 100 and communicating the status of the tape
drive 100 to the host, all as will be understood by those of skill
in the art.

According to one embodiment, an efficient rate-232/234

Each Sub Data Set is then processed using C2 encoding, as
shown in block 202 of FIG. 2, according to one embodiment.
The C2 Encoded Sub Data Set may be the result of processing
a Sub Data Set by the C2 ECC algorithm. The processing,

reverse concatenated modulation code may be inserted ¢s according to one embodiment, may add 12 bytes of C2 ECC

between a Reed-Solomon C2 ECC and an LDPC C1 code.
Some advantages of such an architecture may include a more

to each 84-byte column of the Sub Data Set, as shown in Table
2.
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TABLE 2
C2 Encoded Sub Data Set
0 1 2 3 4 913 914 915 916 917
0 0 1 2 3 4 913 914 915 916 917
1 918 919 920 921 922 1831 1832 1833 1834 1835
82 75276 75277 75278 75279 75280 76189 76190 76191 76192 76193
83 76194 76195 76196 76197 76198 77107 77108 77109 77110 77111
84 77112 77113 77114 77115 77116 78025 78026 78027 78028 78029
95 87210 87211 87212 87213 87214 88123 88124 88125 88126 88127

A (96, 84, 13) Reed-Solomon code may be applied to each
84-byte column of the Sub Data Set matrix producing twelve
C2 ECC bytes per column, according to one embodiment.
The resulting 96x918 matrix of 88,128 bytes may be referred
to as a C2 Encoded Sub Data Set.

The calculation in a GF (256) may be defined by Equation
1, in one approach.

P)=xS+xt 3 +a7+1 Equation 1

A primitive element . in GF (256) may be represented by
Equation 2, in one approach.

20

25

as ECC10, that of R9 may be set as ECC9, etc. When these
ECC bytes are appended to data bytes, and/or placed into a
field, ECC11 may be the first byte appended, followed by
ECC10, ECC?9, etc.

Referring again to FIG. 2, a Headerized Sub Data Set may
be the result of concatenating a 10-byte header to each row of
the C2 Encoded Sub Data Set, as shown in FIG. 2 as the insert
headers module 212, which is then implemented in the tape
layout. The processing may add 10 bytes of a Header to the
beginning of each 918-byte row ofthe Sub Data Set, as shown
in Table 3, according to one embodiment. The resulting Hea-
derized Sub Data Set may be a 96x928 matrix of 89,088

a=(00000010) Equation 2 bytes.
TABLE 3
Headerized Sub Data Set
0 1 9 10 923 924 925 926 927
0 0 1 9 10 923 924 925 926 927
1 928 929 937 938 1851 1852 1853 1854 1855
94 87232 87233 87241 87242 88155 88156 88157 88158 88159
95 88160 88161 88169 88170 89083 89084 89085 89086 89087

The generator polynomial may be represented by Equa-
tions 3 and 4, in one approach.

G(x) = (x+ ') + o' B)(x + 2P Equation 3

(x+ P)x + ) x + P (x + ) (x + ')

129 130 131 132 133)

X+ )x+aNNx+a )X+ )x+a

133

Gx) = ]_[ (x+af)=

=122

Equation 4

224x11 +a’32x10+0z209x9+0z99x8 +w32x7 +

32,5 94 4+ @209,3 32,2 4 o2y 41

P

a®x% + 2% + o ra

As shown in FIG. 3, according to one embodiment, the
ECC bytes may be generated by processing the requisite
bytes through a generator circuit 300. According to one
approach, the generator circuit’s registers, R0, R1, . .., R11,
may be set to (00) prior to beginning the processing. The
registers RO, R1, .. ., R11, may be eight bits wide, according
to one approach. Data bytes may be fed sequentially into the
encoder. After the requisite bytes have been processed, the
content of R11 may be set as ECC11, that of R10 may be set
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Each row of the Headerized Sub Data Set may be passed
through a randomizer 204 in FIG. 2, a modulation encoder
206, then C1 encoding 208 (preferably LDPC coding), and
then format features may be inserted in module 210. The row
element is the basic unit for processing and is referred to as
CW-4 herein (this identifier will become more apparent after
the discussion of the LDPC C1 ECC).

The modulation encoder 206 may be implemented accord-
ing to various embodiments, described herein and otherwise,
as would be understood by one of skill in the art upon reading
the present descriptions. One embodiment of the modulation
encoder 206 is described in FIGS. 7A-7B, described in more
detail later.

Inaddition, the modulation encoder may operate according
to PRML(G,I,M) codes, which are described in U.S. Pat. No.
7,616,134, issued on Nov. 10, 2009, which is hereby incor-
porated in its entirety by reference.

Referring again to FIG. 2, the C1 encoding 208 may be a
LDPC encoding in one approach, and the modulation code
used by the modulation encoder 206 may be the reverse
concatenated code. The format features 210 are states or hard
features that are added to the data to make it easier to identify
a position on the magnetic tape. These format features may
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include, but are not limited to, a DSS which is a periodic
pattern of period 12 that has a ‘1’ followed by 11 ‘0’s’,
variable-frequency oscillator (VFO) fields to lock PLLs and
synchronize characters, etc.

Once the modulation code is added in module 206, the
sub-dataset is encoded with C1 code in module 208, which is
a LDPC code in one approach. Accordingly, in partial reverse
concatenation, the data flow is encoded with a C2 encoder,
then with a modulation code, and then with a C1 encoder.

A 10-byte CW-4 Header may prefix each CW-4 and may
include the information as shown in Table 3, according to one
approach. This information may include a CW-4 identifier,
write pass, and header parity for ECC.

TABLE 4
CW-4 Header
Byte Length in
Positions Bytes Name of the Field
0 4 CW-4 Identifier
4 4 Write Pass
8 2 Header Parity

Table 5 shows the CW-4 identifier, according to one
approach. Byte 0 bit 7 may be an Amble Flag (AF), in one
approach. The AF may be set to ONE if the Designated CW-4
is an Amble Designated CW-4, and ZERO if the Designated
CW-+4 is a Data Designated CW-4.

10

15

20

25

30

10
Headers in the Codeword Object Set, in one embodiment.
Also, the ACN of the first Codeword Object Set written on a
wrap may be ZERO, according to a preferred embodiment.

When appending to the magnetic tape, the ACN of the first
Codeword Object Set written at the append point may be
between 1 and 256 greater mod(2048) than the last Codeword
Object Set written in the Data Set before the append point, in
one embodiment.

The Write Pass Identifier field may identify the write pass
on which the Data Set was written. The content of this field
may be the same as the Tape Write Pass value in the Data Set
Identification Table (DSIT) for the Data Set to which the
CW-4s belong, except following an Interrupted Data Set,
according to one embodiment.

The Header Parity may be a Reed-Solomon code over GF
(256), or any other suitable code known in the art. The calcu-
lation in a GF (256) may be defined by Equation 5, in one
approach.

P)=xS+xt 3 +a?+1 Equation 5

A primitive element o in GF (256) may be set according to

Equation 6, in one approach.

a=(00000010) Equation 6

The generator polynomial may be set according to Equa-
tion 7, in one approach.

Gx)=(x+a?")(x+a2®)=2+a ' 2x+1 Equation 7

Referring now to FIG. 4, the cyclic redundancy check
(CRC) bytes may be generated by processing the requisite

TABLE §
CW-4 Identifier
Byte 0 Byte 1
7 6 5 4 3 2 1 o 7 6 5 4 3 2 1 0
AT AWT Data Set ID Fragment ACN
Byte 2 Byte 3
7 6 5 4 3 2 1 o 7 6 5 4 3 2 1 0

ACN (cont.) CW-4 Designation

Byte 0 bit 6 may be an Adjacent Wrap Toggle (AWT), in
one approach. The AWT may be set to the second least sig-
nificant bit of the wrap number, e.g., ZERO for wraps O and 1,
and ONE for wraps 2 and 3. Byte 0 bits 5-0 may be Data Set
1D Fragments, in one approach. The Data Set ID Fragments
may include the six least significant bits of the Data Set
number. Byte 1 and Byte 2, bits 7-5 may include the 11-bit
Absolute Codeword Object Set Sequence Number (ACN), in
one approach. Byte 2, bits 4-0, and Byte 3 may be designated
based on whether the Designated CW-4 is an Amble Desig-
nated CW-4, in which case these bits may all be set to ZEROS,
or not an Amble Designated CW-4, in which case these bits
may be set to a 13-bit value of the CW-4 Designation, accord-
ing to one approach.

The ACN may be set between 0 and 2047 for each Code-
word Object Set. This number may be one greater than the
ACN of the Codeword Object Set written immediately before
it on tape, or may be ZERO if the previously written ACN is
2047, in one approach. The ACN may be the same in all CW-4
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bytes through a generator circuit 400 whose registers R0, R1
may be set to (00) prior to beginning the processing. Registers
R0 and R1 may be 8 bits wide in one embodiment. Data bytes
may be fed sequentially into the encoder. After the requisite
bytes have been processed, the content of R1 may be CRC1
and that of RO may be CRC0, in one approach. CRC1 may be
the first byte in the header, and CRC0 may be the second byte
in the header, in preferred embodiments.

Each CW-4 from the Headerized Sub Data Set may be
passed through a randomizer 204 in FIG. 2, thereby creating
the Randomized Sub Data Set, in one embodiment. The ran-
domizer is included because in some cases, repetitive patterns
may cause issues in the tape drive. The randomizer ensures
that bits do not repeat for too long, thereby ensuring there will
be no issues in this regard in the tape drive.

The processing will not add any additional bytes to the
Headerized Sub Data Set. The resulting Randomized Sub
Data Set may be a 96x928 matrix of 89,088 bytes, as shown
in Table 6, according to one embodiment.
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TABLE 6
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Randomized Sub Data Set

0 1 9 10 923 924 925 926 927
0 0 1 9 10 923 924 925 926 927
1 928 929 937 938 1851 1852 1853 1854 1855
94 87232 87233 87241 87242 88155 88156 88157 88158 88159
95 88160 88161 88169 88170 89083 89084 89085 89086 89087

12

The randomization algorithm may be preset at the begin-
ning of every CW-4 Header, in one approach, or may be set
according to some other rationale known in the art. FIG. 5§
shows a randomization shift register 500, according to one
embodiment. For each byte of the CW-4 Header and data, the
most significant bit, e.g., bit 7, is input first. Then, each
successive bit is input. The logical operators are Exclusive
OR’s. The result of this operation is a randomized bit stream,
as shown in FIG. 5.

Each CW-4 from the Randomized Sub Data Set is passed
through an encoder, such as the modulation module 206 in
FIG. 2. The encoder may be for a (234, 232) modulation code
satisfying the constraints (G=12, =6, M=22), in one
approach. This extends the length of each CW-4 from 928
bytes to 936 bytes, according to one embodiment. Thus, the
Modulated Sub Data Set may be a 96x936 matrix of 89,856
bytes, according to one approach. The binary output of the
modulation encoder is referred to as modulation-encoded
bits.

Each CW-4 from the Modulated Sub Data Set is then
passed through an encoder for a (1992, 1872) LDPC code,
such as the LDPC encoding module 208 shown in FIG. 2.
There are 234 information bytes per LDPC codeword and
each CW-4 of the C1 Sub Data Set may include four LDPC
codewords. Since the modulation code has been added prior
to LDPC encoding, four LDPC codewords may be concat-
enated to form the CW-4 (note that in conventional drives, the
C1 codewords are interleaved). The constraints satisfied by
the modulated and C1 encoded sequences recorded on tape
may be (G=14, I=7, M=24), in one approach. C1 encoding
extends the length of each CW-4 of the Modulated Sub Data
Set from 936 bytes to 996 bytes. Thus, the C1 Sub Data Set
may be a 96x996 byte matrix of 95,616 bytes.

The input to the LDPC encoder 208 may be the bits that are
output from the modulation encoder 206. These bits may
occur in blocks of 234 bits. Eight blocks of modulation
encoded data bits may be concatenated to form the input to the
LDPC encoder 208. Each block of 234 bytes (1872 bits) as
input to the LDPC encoder 208 may be referred to as a
modulation-encoded block.

The C1 code may be an LDPC code, in preferred embodi-
ments, that is typically described by an H-matrix. A simple
example of the notation used for the LDPC encoder appears
below for a small H-matrix, which may be enlarged to any
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sized LDPC encoding scheme, as would be understood by
one of skill in the art. The H-Matrix for an LDPC code is a
sparse, binary matrix of 1 and O entries. The example H-Ma-
trix shown below is for an MxN parity check matrix, where
M=9 (check node) and N=12 (symbol node). For this
example, each check node has four 1 and eight O entries—i.e.,
% of the matrix is filled with O entries.

g

1}
[ RS R e = T =
- 0 0 0O O — O — O
- 0 0O O —~ O O O —
OO0 = - O O - O O
OO0 - - 0o O O - O
O - 0 0 O = O O -
o - O O - O O -
O - O O~ O O O -
- 0 0O - 0 O — © O
- 0 0O O O = - O O
[ R R S =)
O - 0O - 0 QO O = O

Example H-Matrix

The example H-matrix may be represented by the connec-
tivity matrix shown below, according to one embodiment. In
this connectivity matrix, each check node is listed in the left
column starting with index 0 (the top row of the H-matrix).
The location of each 1 entry within the check node of the
H-matrix is given in the corresponding row of the connectiv-
ity matrix, again starting with bit index 0 being the left col-
umn.

Check-Node # Symbol-Node Indices

0 2 5 6 7
1 0 1 4 11
2 3 8 9 10
3 1 5 6 9
4 0 2 7 10
5 3 4 8 11
6 0 3 4 6
7 5 7 10 11
8 1 2 8 9
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Simple Example of a Check-Node Connectivity

Matrix

The systematic H-Matrix for a LDPC code, according to
one embodiment, may have 120 check-nodes (M=120) and
1992 symbol nodes (N=1992). This creates 120 parity bits
which normally may be concatenated to the end of the modu-
lation-encoded block. However, since the data has been
modulation encoded, this is not acceptable. Having 120 parity
bits at the end of the 1872 bit modulation-encoded block
would destroy the properties of the modulation code, as
would be done in the conventional art. In order to avoid this
problem, the parity bits are interspersed within the modula-
tion-encoded bits. This does slightly weaken the properties of
the modulation code, but the overall properties of the modu-
lation code are still strong. With the parity insertion scheme
shown in Table 7 below, the original modulation constraints
(G=12, =6, M=22) are weakened to (G=14, 1=7, M=24).

Of course, any number of check-nodes and symbol nodes
may be used according to user requirements, design criteria,
tape capability, etc.

Instead of concatenation, the LDPC parity bits may be
inserted within the modulation-encoded bits. In one embodi-
ment, the encoding process begins by extending the modula-
tion-encoded block from 1872 bits to 1992 bits by adding 120
bits. The 120 bits are initially set to ‘0’ and pairs are inter-
spersed in the modulation-encoded block between groups of
30 modulation-encoded bits. The LDPC encoder takes this
input and calculates the parity bits, filling in the 120 bit
locations that were initially set to ‘0’.

The creation of the input codeword and subsequent filling
with parity check bits to create a LDPC codeword is shown in

Table 7, according to one embodiment.
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TABLE 7

Insertion of LDPC Parity Bits

LDPC Codeword Bits  Source

0-29 Modulation-encoded bits 0-29

30-31 Parity check bits from check-node 119 and 118

32-61 Modulation-encoded bits 30-59

62-63 Parity check bits from check-node 117 and 116

64-93 Modulation-encoded bits 60-89

94-95 Parity check bits from check-node 115 and 114
1888-1917 Modulation-encoded bits 1770-1799
1918-1919 Parity check bits from check-node 1 and 0
1920-1991 Modulation-encoded bits 1800-1871

After the parity-check bit locations are created and filled
with O entries, the parity check bits are created by using the
H-matrix, an example of which is shown in FIGS. 6A-6F
(where -1 indicates a no-connect), with FIGS. 6A-6C being
for the left part of the check-node connectivity matrix, and
FIGS. 6D-6F being for the right part of the check-node con-
nectivity matrix. The process begins by calculating check-
node 119 which is placed at bit 30 of the LDPC codeword.
Next, check-node 118 is calculated and placed at bit 31. This
continues until all the parity-check bits are calculated and
placed in the LDPC codeword.

An ECC Encoded Data Set may include 6,119,424 bytes
having sixty-four 96x996-byte C1 Encoded Sub Data Sets.
Each row of each C1 Encoded Sub Data Set may be a 996-
byte C1 Encoded CW-4. Thus, according to one embodiment,
there may be 6,144 C1 Encoded CW-4s per ECC Encoded
Data Set.

Table 8 shows how the designations for the 6,144 CW-4s
may be allocated from the sixty-four C1 Sub Data Sets and the

row number within the C1 Sub Data Set, in one example.

TABLE 8

CW-4 Designation

Row within

Sub Data Set Number

Sub Data Set 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 32 33 34 35 36 37 38 38 40 41 42 43 44 45 46 47
2 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
93 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
94 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
95 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
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TABLE 8-continued
CW-4 Designation
Row within Sub Data Set Number
SubDataSet 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 8 8 82 8 84 8 8 87 8 8 90 91 92 93 94 95
2 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
93 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
94 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
95 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
Row within Sub Data Set Number
SubDataSet 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
0 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
1 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
2 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
93 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
94 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
95 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
Row within Sub Data Set Number
SubDataSet 48 49 50 51 52 53 54 55 56 57T 58 59 60 61 62 63
0 48 49 50 51 52 53 54 55 56 57T 58 59 60 61 62 63
1 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
2 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
93 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
94 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
95 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
Designated CW-4s may be written simultaneously onto the , Sets may be numbered 0 to 191. A Codeword Object Set (CO
magnetic tape in sets of thirty-two Designated CW-4s thereby Set) comprises two CW-4 Sets, in one approach.
forming a CW-4 Set, where 32 is the number of concurrent The CW-4 Set and track number to which a Designated
active tracks. Of course, more or less tracks may exist on the CW-4 is allocated may be defined according to Table 9 and
magnetic tape, in which case the numbers described herein 55 Table 10, in one approach. Note that the cells doubly outlined

may be altered accordingly, as would be understood by one of
skill in the art upon reading the present descriptions. One
Designated CW-4 of each set may be written to each of'the 32
tracks. Tracks may be numbered O to 31, where Logical
Tracks 0 to 31 correspond to the physical tracks that are
defined to be in the current wrap, in numerically ascending
order. Logical Track 0 may correspond to the lowest num-
bered physical track in the set. Logical Track 31 may corre-
spond to the highest numbered physical track in the set. CW-4
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indicate the location of the C1 Codeword Symbols from Sub
Data Sets 0 and 1. This illustrates the way in which the C1
Codeword is spread across all tracks. The ordering of the
CW-4 Sets within a CO Set is periodically reversed, in one
approach. See CW-4 Sets 64/65, 128/129, etc.

Note that the entry at CW-4 set number i and track number
t is given by Equation 8.

CWI_table(i,)=floor(i/2)* 64+mod(mod(i,2)}+mod

(floor(i/96),2),2)+mod(floor(i/2)* (-15)+,32)*2 Equation 8
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TABLE 9

US 9,183,852 B2

Allocation of CW-4s to Logical Tracks

Track CW-4 Set
Number 0 1 2 3 4 5
0 0 1 98 99 132 133
1 2 3 100 101 134 135
2 4 5 102 103 136 137
3 6 7 104 105 138 139
4 8 9 106 107 140 141
5 10 11 108 109 142 143
6 12 13 110 111 144 145
7 14 15 112 113 146 147
8 16 17 114 115 148 149
9 18 19 116 117 150 151
10 20 21 118 119 152 153
11 22 23 120 121 154 155
12 24 25 122 123 156 157
13 26 27 124 125 158 159
14 28 29 126 127 160 161
15 30 31 64 65 162 163
16 32 33 66 67 164 165
17 34 35 68 69 166 167
18 36 37 70 71 168 169
19 38 39 72 73 170 171
20 40 41 74 75 172 173
21 42 43 76 77 174 175
22 44 45 78 7 176 177
23 46 47 80 81 178 179
24 48 49 82 83 180 181
25 50 51 84 85 182 183
26 52 53 86 87 184 185
27 54 55 88 89 186 187
28 56 57 90 91 188 189
29 58 59 92 93 190 191
30 60 61 94 95 128 129
31 62 63 96 97 130 131
1

Codeword Object Set

18
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TABLE 10
Allocation of CW-4s to Logical Tracks
Track CW-4 Set
Number 186 187 188 189 190 191
0 S 5979 | 5978 6077 6076 | 6111 6110
1 S 5981 5980 6079 6078 | 6113 6112
P 5983 5982 6017 6016 | 6115 6114
3 5985 5984 | 6019 6018 | 6117 | 6116
4 5987 | 5986 6021 6020 | 6119 | 6118
5 5989 | 5988 6023 6022 | 6121 6120
6 5991 5990 6025 6024 | 6123 6122
7 5993 5992 6027 6026 | 6125 6124
8 5995 5994 | 6029 6028 | 6127 | 6126
9 S 5997 | 5996 6031 6030 | 6129 | 6128
10 5999 | 5998 6033 6032 | 6131 6130
11 6001 6000 6035 6034 | 6133 6132
12 6003 6002 6037 6036 | 6135 6134
13 6005 6004 | 6039 6038 | 6137 | 6136
14 6007 6006 6041 6040 | 6139 | 6138
15 6009 6008 6043 6042 | 6141 6140
16 6011 6010 6045 6044 | 6143 6142
17 6013 6012 6047 6046 | 6081 6080
18 6015 6014 | 6049 6048 | 6083 6082
19 5953 5952 6051 6050 | 6085 6084
20 5955 5954 | 6053 6052 | 6087 | 6086
21 5957 | 5956 6055 6054 | 6089 | 6088
22 5959 | 5958 6057 6056 | 6091 6090
23 5961 5960 6059 6058 | 6093 6092
24 5963 5962 6061 6060 | 6095 6094
25 5965 5964 | 6063 6062 | 6097 | 6096
26 5967 | 5966 6065 6064 | 6099 | 6098
27 5969 | 5968 6067 6066 | 6101 6100
28 5971 5970 6069 6068 | 6103 6102
29 5973 5972 6071 6070 | 6105 6104
30 5975 5974 | 6073 6072 | 6107 | 6106
31 5977 | 5976 6075 6074 | 6109 | 6108
93 94 95
Codeword Object Set
55

In one embodiment, the modulation encoder 206 may oper-
ate according to FIGS. 7A-7B to generate the even and odd
interleaves of'the (234,232) reverse concatenated modulation
code. In this embodiment, the modulation encoder is a serial
design that is capable of handling continuous data streaming.
For this design, 116 input bits are received and 117 output bits
are generated in the even/odd interleave, in one approach. In
each interleave, the stream of 116 input bits is processed in
117 clock cycles.

Referring now to FIG. 7A, an input interface 706 and state
counter 704 are shown in accordance with one embodiment.
There are four outputs shown, an input shift register—
ENCSR(11:0), a state counter output—SYSCNT(6:0), a start
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bit—STARTZ, and a gated input to the modulation encoder—
STATE IN. The input data (DATA IN) is the only input shown.

The input data (DATA IN) may be brought into the input
interface 706 concurrently with the system counter (SY-
SCNT(6:0)) being at count=0x00. The data is shifted into the
shift register (Reg) as the system counter 704 counts upward.
When the counter reaches 0xB (11 decimal), the shift register
data is latched into the modulation encoder state machine
(with an additive off set of 0x50). The input shift is only
required for the serial streaming of the data—it is possible to
combine this logic with the modulation encoder state
machine.
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The state counter—SYSCNT(6:0) 704 is used to control
the modulation encoder state machine, in one approach. The
counter starts at 0x00 and begins incrementing until it reaches
0x74 (116 decimal). When the counter reaches 0xB (11 deci-
mal), the modulation encoder state machine is initialized with
data from the shift register. At counts 0x74 (116 decimal) and
counts 0x0 through OxA the input to the modulation encoder
is gated (set to zero) and the last remains of the encoded data
are flushed from the modulation encoder.

The start bit—STARTZ keeps the modulation encoder
state machine and the modulated data output bit set to zero
until the system counter increments to OxB, in one approach.

When the system counter 704 is at count 0x74 (116 deci-
mal) and counts 0x0 through 0x A, the input to the modulation
encoder is set to zero, in one approach. This enables the
modulation encoder state machine to seamlessly switch
between processing input data and flushing the remaining
encoded data bits from the state machine.

The modulation encoder 702 is shown in FIG. 7B, in accor-
dance with one embodiment. The primary components of the
modulation encoder 702 are the modulation encoder state
machine—ENCSTATE(12:0), the two lookup tables—W and
VW, and the encoded output data bits—SERDATA.

The modulation encoder state machine is held at 0x0000
until the start bit is enabled when the system counter equals
0xB. Similarly, the output bit is held at zero as well.

When the system counter reaches 0xB (11 decimal), the
modulation encoder state machine is loaded with data from
the input shift register (with an additive offset of 0x50). After
each clock, the output of the modulation encoder is multiplied
by two, to which the gated input bit is added (this is a shift
register operation where the encoder state machine state is
shifted upwards and the input data is shifted into the least
significant bit).

The output of this shift register operation is compared to
the output of the VW table. If the result is greater than or equal
to VW, then the W value is added to the result and latched into
the encoder state machine. If the result is less than VW, then
the result is loaded directly into the shift register state
machine.

The two lookup tables, W and VW, may have the following
characteristics, in one embodiment:

Lookup Table W
WI[0] = 0x02C0;
WI[1] = 0x02A0;
WI[2] = 0x0280;
WI[3] = 0x0260;
WI[4] = 0x0240;
WI[5] = 0x0200;
WI[6] = 0x0200;
WI[7] = 0x0200;
W8] = 0x0000;
WI[9] = 0x0000;
WI[10] = 0x0000;
WI[11] = 0x0000;
WI[12] = 0xOEAO;
WI[13] = 0x0E90;
W([14] = 0x0E70;
WI15] = 0x0E60;
WI[16] = 0x0E40;
WI[17] = 0xOE30;
WI[18] = 0x0E10;
WI[19] = 0x0E00;
W[20] = 0xODEO;
WI[21] = 0x0DDO0;
WI[22] = 0xODBO;
W[23] = 0x0DAO;
W[24] = 0x0D80;

10

15

25

35

40

45

50

55

60

65

22

-continued

Lookup Table W
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] = 0x04E0;
] = 0x04C0;
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-continued -continued
Lookup Table W Lookup Table VW
WI102] = 0x04A0; VWI[56] = 0x15B2;
W[103] = 0x0480; 5 VWI[57] = 0x15D2;
W[104] = 0x0460; VWI[58] = 0x15F2;
W[105] = 0x0440; VWI[59] = 0x1602;
W[106] = 0x0420; VWI[60] = 0x1622;
W[107] = 0x0400; VWI[61] = 0x1642;
W[108] = 0x03EO; VW[62] = 0x1662;
W[109] = 0x03C0; 10 VW[63] = 0x1682;
W[110] = 0x03A0; VWI64] = Ox16A2;
W111] = 0x0380; VW[65] = 0x16C2;
W[112] = 0x0360; VWI66] = Ox16E2;
W[113] = 0x0340; VWI67] = 0x1702;
WIL14] = 0x0320; VW8] = 0x1722;
W[115] = 0x0300; 15 W%gg} - 8"32’
- 0x1762;
W[116] = 0x02E0; VW[71] = 0x1782:
VWI[72] = 0x17A2;
VWI[73] = 0x17C2;
VW][74] = 0x17E2;
20 VWI[75] = 0x1802;
Lookup Table VW VW[76] = 0x1822;
VWI[77] = 0x1842;
VWI[0] = 0x1D44; VWI[78] = 0x1862;
VW][1] = 0x1D68; VWI[79] = 0x1882;
VWI[2] = 0x1D90; VWI[80] = 0x18A2;
VW][3] = 0x1DCO0; VWI[81] = 0x18C2;
VW[4] = 0x1E00; 25 VW[82] = 0x18E2;
VWI[5] = 0x1E00; VWI[83] = 0x1902;
VWI[6] = 0x1E00; VWI[84] = 0x1922;
VW][7] = 0x1E00; VWI[85] = 0x1942;
VWI[8] = 0x2000; VWI[86] = 0x1962;
VWI[9] = 0x2000; VWI[87] = 0x1982;
VWI[10] = 0x2000; 30 VW([88] = 0x19A2;
VWI[11] = 0x2000; VWI[89] = 0x19C2;
VWI[12] = 0x1162; VWI[90] = 0x19E2;
VWI[13] = 0x1172; VWI[91] = 0x1A02;
VWI[14] = 0x1192; VWI[92] = 0x1A22;
VWI[15] = 0x11A2; VWI[93] = 0x1A42;
VWI[16] = 0x11C2; 35 VWI[94] = 0x1A62;
VWI[17] = 0x11D2; VWI[95] = 0x1A82;
VWI[18] = 0x11F2; VWI[96] = 0x1AA2;
VWI[19] = 0x1202; VWI[97] = 0x1AC2;
VWI[20] = 0x1222; VWI[98] = 0x1AE2;
VWI[21] = 0x1232; VWI[99] = 0x1B02;
VWI[22] = 0x1252; 0 VWI[100] = 0x1B22;
VWI[23] = 0x1262; VWI[101] = 0x1B42;
VW[24] = 0x1282; VWI[102] = 0x1B62;
VWI[25] = 0x1292; VWI[103] = 0x1B82;
VWI[26] = 0x12B2; VWI[104] = 0x1BA2;
VWI[27] = 0x12C2; VWI[105] = 0x1BC2;
VWI[28] = 0x12E2; VWI[106] = 0x1BE2;
VW[29] = 0x12F2; 45 VW[107] = 0x1C02
VWI[30] = 0x1312; VWI[108] = 0x1C22
VWI[31] = 0x1322; VWI[109] = 0x1C42
VWI[32] = 0x1342; VWI[110] = 0x1C62;
VWI[33] = 0x1352; VWI[111] = 0x1C82;
VWI[34] = 0x1372; VWI[112] = 0x1CA2;
VWI[35] = 0x1382; 50 VWI[113] = 0x1CC2;
VWI[36] = 0x13A2; VWI[114] = 0x1CE2;
VWI[37] = 0x13B2; VWI[115] = 0x1D02;
VWI[38] = 0x13D2; VWI[116] = 0x1D22
VWI[39] = 0x13E2;
VWI[40] = 0x1402;
VW[41] = 0x1422; 55 The modulation encoder, according to one embodiment,
WE@} - gﬁig: may have the following C-Code Simulation, or the like:
VWI[44] = 0x1472;
VWI[45] = 0x1482;
VW[47] =0X14C2, EXE 2L LT T
VW[48] = 0x14D2; 60 if (sys_counter == 11)
VWI[49] = 0x14F2;
VWI[50] = 0x1512; start_in = 1;
VWI[51] = 0x1522;
VWI[52] = 0x1542; else
VWI[53] = 0x1562; {
VWI[54] = 0x1582; 65 start_in = start_z;
VWI[55] = 0x1592; 1
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-continued

Vi Input Shift Register s SR sk SRR O SR SR SRR SR KK SRR RS SOHORK SRR R
SRR Rk R KRR R SRS SROROR K

if (sys__counter < 116)

enc_sr_in = OXFFF & ((enc_sr_z <<1) | (0x1 & data__in));

}

else

{

encisriin =€Nnc_sr_7;
Vi Input Bit to State Machine ¥ isormm ol oror Rk
SRR Rk R KRR O S SK ROROR K

if ((sys_counter < 11) II (sys__counter == 116))

state__in=0;

}

else

{

state_in = data_ in;
// State Machine and Data Output *### % stk ok ook
35 35K KR KR R ROR SRR OROR R OR R

if (sys__counter == 11)

ser_data_in=0;
enc_ state__in = enc__sr_in + 0x50;

else if (start_ z)

enc_state_in = (enc_ statez << 1) | (0x1 & state__in);
if (enc__state_ in >= VW/[sys__counter])

{
ser_data_ in =0;
enc_state_ in = Ox1FFF & (enc_state__in + W[sys__counter]);
}
else
{
ser_data_in=1;
}
}
else
{
enc_state_in = 0;
ser_data_in=0;
}

Now referring to FIG. 8, a method 800 for writing datato a
magnetic tape utilizing a rate-(232/234) reverse concatenated
modulation code is shown according to one embodiment. As
an option, the present method 800 may be implemented in the
context of the functionality and architecture of FIGS. 1-7B.
However, method 800 may be carried out in any desired
environment. It should be noted that the aforementioned defi-
nitions may apply during the present description, and that
method 800 may include more or less operations than those
described herein, according to various embodiments.

In operation 802, a data stream comprising one or more
data sets is received. The method 800 may be carried outin a
streaming fashion or in batches, as desired by a user or suit-
able for the data stream.

In operation 804, each data set is separated into a plurality
of sub data sets. In one embodiment, each data set may be
separated into sixty-four sub data sets, each sub data set
organized as an 84x918-byte matrix being 77,112 bytes in
size.

In operation 806, each sub data set is encoded with a C2
encoding code. In one approach, the encoding with a C2
encode may comprise adding twelve bytes of C2 ECC to each
84-byte column of each sub data set’s matrix, creating a
96x918-byte matrix being 88,128 bytes in size. In one
embodiment, the C2 encoding may comprise a (96,84,13)
Reed-Solomon ECC, or some other ECC known in the art.

In optional operation 808, each sub data set is headerized.
This operation is described as being optional because there
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may be other ways of identitying the sub data sets besides
headerizing each of them. Any other method of identifying
the sub data sets may be used, as known in the art. According
to one approach, the headerizing may comprise adding a
10-byte header to each row of each C2-encoded sub data set’s
96x918-byte matrix to create a 96x928-byte matrix for each
headerized sub data set being 89,088 bytes in size.

Inoptional operation 810, the sub data sets are randomized.
This operation is described as being optional because there
may be other ways of ensuring that the sub data sets consist of
essentially random data before they are encoded by the modu-
lation encoder. Any other method of ensuring that the data
sets are essentially random, for instance, by compression and
encryption of user data, may be used, as known in the art. In
one embodiment, each row (CW-4) of each headerized sub
data set’s 96x928-byte matrix may be randomized to create a
randomized 96x928-byte matrix.

In operation 812, each C2-encoded sub data set is encoded
with a modulation code. In one embodiment, the modulation
coding may comprise applying a (234,232) modulation code
to each randomized 96x928-byte matrix by extending a
length of each CW-4 by eight bytes to create a 96x936-byte
matrix being 89,856 bytes in size.

In operation 814, each modulated sub data set is encoded
with a C1 encoding. According to one embodiment, the C1
encoding may comprise applying a (1992, 1872) LDPC code
to each sub data set by adding four LDPC codewords to each
CW-4 to create a 96x996-byte matrix being 95,616 bytes in
size.

In operation 816, the encoded modulated sub data sets are
simultaneously written to data tracks of the magnetic tape. In
one embodiment, the simultaneous writing may comprise
writing designated CW-4’s in sets of 32 simultaneously to the
magnetic tape.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of an embodiment of the present invention should not be
limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:

1. A method for writing data to a magnetic tape utilizing a
rate-(232/234) reverse concatenated modulation code, the
method comprising:

receiving a data stream comprising one or more data sets;

separating each data set into a plurality of sub data sets;
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encoding each sub data set with a C2 code to produce
C2-encoded sub data sets;

encoding each C2-encoded sub data set with the rate-(232/
234) reverse concatenated modulation code to produce
modulated sub data sets;

encoding each modulated sub data set with a C1 code to

produce Cl-encoded modulated sub data sets; and
simultaneously writing the Cl-encoded modulated sub
data sets to data tracks of the magnetic tape.

2. The method as recited in claim 1, wherein the separating
each data set into a plurality of sub data sets comprises cre-
ating sixty-four sub data sets from each data set, each sub data
set organized as an 84x918-byte matrix being 77,112 bytes in
size.

3. The method as recited in claim 2, wherein the encoding
each sub data set with the C2 code adds twelve bytes of C2
error correction code (ECC) to each 84-byte column of each
sub data set’s matrix, creating a 96x918-byte matrix being
88,128 bytes in size, wherein the C2 code comprises a (96,
84,13) Reed-Solomon ECC.

4. The method as recited in claim 3, further comprising
headerizing each sub data set by adding a 10-byte header to
each row of each C2-encoded sub data set’s 96x918-byte
matrix to create a 96x928-byte matrix for each headerized sub
data set being 89,088 bytes in size.

5. The method as recited in claim 4, further comprising
randomizing each row (CW-4) of each headerized sub data
set’s 96x928-byte matrix to create a randomized 96x928-byte
matrix.

6. The method as recited in claim 5, wherein the encoding
each C2-encoded sub data set with the modulation code com-
prises applying a (234,232) modulation code to each random-
ized 96x928-byte matrix by extending a length of each CW-4
by eight bytes to create a 96x936-byte matrix being 89,856
bytes in size.

7. The method as recited in claim 6, wherein the C1 code
comprises a (1992, 1872) low-density parity check (LDPC)
code, and wherein the encoding each modulated sub data set
with the C1 code comprises applying the (1992, 1872) LDPC
code to each sub data set by concatenating four LDPC code-
words to each CW-4 to create a 96x996-byte matrix being
95,616 bytes in size.

8. The method as recited in claim 7, wherein the simulta-
neously writing the Cl-encoded modulated sub data sets to
data tracks of the magnetic tape comprises writing designated
CW-4’s in sets of 32 simultaneously to the magnetic tape.

9. A method for writing data to a magnetic tape, the method
comprising:
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receiving a data stream comprising one or more data sets;

separating each data set into a plurality of sub data sets;

encoding each sub data set with a C2 code to produce
C2-encoded sub data sets;

encoding each C2-encoded sub data set with a modulation

code to produce modulated sub data sets;

encoding each modulated sub data set with a C1 code to

produce Cl-encoded modulated sub data sets; and
simultaneously writing the Cl-encoded modulated sub
data sets to a plurality of data tracks of the magnetic tape,
wherein the modulation code is a reverse concatenated
modulation code.

10. The method as recited in claim 9, wherein the separat-
ing each data set into a plurality of sub data sets comprises
creating sixty-four sub data sets from each data set, each sub
data set organized as an 84x918-byte matrix being 77,112
bytes in size, and wherein the encoding each sub data set with
the C2 encoding code adds twelve bytes of C2 error correc-
tion code (ECC) to each 84-byte column of each sub data set’s
matrix, creating a 96x918-byte matrix being 88,128 bytes in
size, wherein the C2 encoding code comprises a (96,84,13)
Reed-Solomon ECC.

11. The method as recited in claim 10, further comprising
headerizing each C2-encoded sub data set by adding a
10-byte header to each row of each C2-encoded sub data set’s
96x918-byte matrix to create a 96x928-byte matrix such that
each headerized sub data set is 89,088 bytes in size.

12. The method as recited in claim 11, further comprising
randomizing each row (CW-4) of each headerized sub data
set’s 96x928-byte matrix to create a randomized 96x928-byte
matrix.

13. The method as recited in claim 12, wherein the encod-
ing each C2-encoded sub data set with the modulation code
comprises applying a (234,232) modulation code to each
randomized 96x928-byte matrix by extending a length of
each CW-4 by eight bytes to create a 96x936-byte matrix
being 89,856 bytes in size.

14. The method as recited in claim 13, wherein the C1 code
comprises a (1992,1872) low-density parity check (LDPC)
code, and wherein the encoding each modulated sub data set
with the C1 code comprises applying the (1992,1872) LDPC
code to each sub data set by concatenating four LDPC code-
words to each CW-4 to create a 96x996-byte matrix being
95,616 bytes in size.

15. The method as recited in claim 14, wherein the writing
the Cl-encoded modulated sub data sets to the plurality of
data tracks of the magnetic tape comprises writing designated
CW-4’s in sets of 32 simultaneously to the magnetic tape.
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